

A Drone-Based Gravity Measurement System

Tim Enzlberger Jensen National Space Institute at the Technical University of Denmark (DTU Space)

DroneSOM workshop MineralXploration Beyond 2025 Levi, Finland October 30th, 2023

DTU

GTK

Part I: Moving-Base Gravimetry Or how to do gravity observations from a moving platform

Gravity Instruments

We measure gravity using a gravimeter!

There are many different measurement technologies

But all gravimeters are essentially accelerometers!

How Does the Gravimeter Work?

Basic concept:

- Proof mass
- Ideal spring
- Pick-off device

Apply a (contact) force:

- Casing accelerates
- Spring force compensation
- Pick-off displacement

Apply gravity:

- Affects both casing and proof mass
- No pick-off displacement

eit

Co-funded by the

European Union

What are We Measuring Then?

Scenario: An observer is standing in this room

The observer will experience two forces:

1. Gravity: Gravitational pull of the Earth + centrifugal force

2. The (equal and opposite) reaction force from the floor

 $\vec{\mathbf{m}} = \mathbf{m} \mathbf{g} + \mathbf{m} \mathbf{f} \Leftrightarrow \mathbf{f} = \ddot{\mathbf{r}} - \mathbf{g}$ Specific force
This is what the
acceleration
Acceleration due to
measures $\vec{\mathbf{m}} = \mathbf{m} \mathbf{g} + \mathbf{m} \mathbf{f} \Leftrightarrow \mathbf{f} = \ddot{\mathbf{r}} - \mathbf{g}$ Gravitational
acceleration
Newtons law of
gravitation

The gravimeter measures gravity with opposite sign

Weak equivalence principle!

Orientation of the Gravimeter

The Fundamental Problems of Gravin Active Strand Stra Strand Stra

1. Determine the sensor orientation

The fundamental equation of gravimetry

$$\mathbf{g} = (\mathbf{\ddot{r}} - \mathbf{C})\mathbf{f}$$

2. Correct for the kinematic component

contains two fundamental issues:

Stationary vs. Moving-Base Gravimet 💅 😂 GTK 🚆

Problem 1: Sensor Orientation

There are two common approaches to handle the orientation:

1. Mechanical – Mounting the accelerometer on a stabilised platform

2. Computational – The accerometer is mounted directly on the chassis (strapdown)

Problem 1: Sensor Orientation

The Stabilized Platform

- 1. Mechanical Mounting the accelerometer on a stabilised platform
- Gyroscopes measure rotational motion and forward information to torque motors
- Torque motors will compensate mechanically by rotating platform
- $\rightarrow~$ Sensor is isolated from aircraft rotations

Determining the plumb-line direction

- Horizontal accelerations are measured
- At constant velocity, horizontal accelerations should average out in time
- $\rightarrow\,$ Horizonal accelerations filtered in time
- → Any misalignment is derived from filtered accelerations (and corrected for) (will not work during turns)

From LaCoste, Measurement of Gravity at Sea and in the Air, Reviews of Geophysics (1967)

Problem 1: Sensor Orientation

The Strapdown Configuration

2. Computational – The accerometer is mounted directly on the chassis (strapdown)

- Gyroscopes measure rotation and stores information digitally
- \rightarrow The orientation can be determined computationally post-mission
- A triad of perpendicular accelerometers measure the full vector
- $\rightarrow\,$ The body-frame vector can be decomposed onto the desired direction post-mission

Direction of gravity / plumb-line

eit

Co-funded by the

European Union

Part II: Towards a Drone-Based Gravity System

Prion Mk3 Test (Previous Project - first attempt)

UAVE Prion Mk3 UAV	
Wingspan	3.8 m
Length	3.0 m
Weight	30 kg
Operational time	12 hours
Operational range	1000 km
Payload	Max. 15 kg
Engine type	Petrol

Co-funded by the

European Union

eit

RawMaterials

Connecting matters

Prion Mk3 Test (Previous Project)

Structural map: Expected gravity anomaly

Co-funded by the

European Union

eit

RawMaterials

Connecting matters

Prion Mk3 Test (Previous Project)

First results

• Flights characterised by large attitude variations

Co-funded by the

European Union

- Dynamics larger than aircrafts
- Gives processing challenges

Fine Tuned Results

- Internal IMU errors are estimated based on repeat line (least-squares difference minimized)
- Additional errors are related to the relative difference between internal sensors (geometrical configuration)
- Such errors are usually not relevant for aircrafts, but might be for high-dynamic environments.

Lessons Learned

- We got some decent gravity results but it still remains an open question how to mitigate errors.
 - Maybe processing development
 - Maybe changing the platform

In the DroneSOM project we will experiment with both fixed-wing and multirotor UAVs. And we will look for other sensors.

• Getting permission to fly this kind of UAV took a long time (more than a year).

In the DroneSOM project we will aim at smaller UAVs, which makes the process easier.

Sensors on the Market

Conclusion: iMAR is the only realistic option within the project lifetime			chers if	We know it works for gravimetry Heavy
	iMAR iNAT-RQH-4001	Fibernetics Triton Navigation-Grade IMU	Thales TopAxyz Grade 0	Smaller weight
Accelerometer	Q-Flex	Q-Flex	?	Accelerometer technology same
Bias stability	< 25 μg	< 25 μg	50 μg	
Scale factor stability	< 100 ppm	< 100 ppm	75 ppm	First sensor not yet ready (start-
Gyroscopes	RLG	FOG	FOG	up company almed at US market)
Bias stability	< 0.002 deg/hr	< 0.005 deg/hr	< 0.001 deg/hr	
Random walk	$< 0.001~{ m deg}/\!\sqrt{hr}$	$< 0.0003~{ m deg}/\!\sqrt{hr}$	$< 0.0016~{ m deg}/\!\sqrt{hr}$	
Scale factor stability	< 5 ppm	~10 ppm	< 15 ppm	Light weight
Technical details				Low power consumption
Size	187 x 128 x 296 mm	Ø 159 x 178 mm	157 x 102 x 107 mm	Acceleremeters highly
Weight	~ 7.9 kg	4.1 kg	2.8 kg	temperature sensitive
Input voltage	10 – 35 V	18 – 35 V		Not complete system (sensor
Power consumption	< 25 W	< 14 W	< 6 W	package only, no timing and data
Temperature range	−40 to 71 °C	−20 to 60 °C	−40 to 70 °C	collection)

Requirements and Limitations

Flight regulations for getting permission to fly provides the requirements:

- Wing-span below 3 m
- Total weight below 25 kg

IMU weight will reduce in near future

- → Current weight limits practical operation critically
- \rightarrow Reduced weight will make this method much more useful

Sensor weight is the main limitation of the system:

- iMAR incl. Power cable: 7.20 kg
- GNSS antenna: 0.11 kg
- LiPo battery: 0.31 kg

Total weight: ~7.70 kg (incl. cables)

The GNSS System

We need high-quality GNSS to derive kinematic accelerations!

The DTU system for many years:

JAVAD DELTA GNSS Reciever $\approx 30 \times 100 \times 150 \text{ mm}$ Size: Weight: $\approx 0.4 \text{ kg}$

NovAtel ANT-532-C Dual Frequency **GNSS** Antenna Size: $\approx 30 \times 80 \times 120$ mm Weight: $\approx 0.2 \text{ kg}$

New multi-constellation system:

weight = 103 g

Results from static experiment (accelerations should be zero)

The increased number of satellites from more systems seem to improve accelerations

The Fixed-Wing Platform

Finding a suitable platform proved challenging → Weight main limitation!

Solution: Custom-made UAV designed around iMAR IMU Ongoing development by Dines Avitech

European Union

Dines UAV-005-DTU	
Wingspan	2.99 m
Length	2.15 m
Weight	25 kg MTOM
Operational time	1,5 hours
Operational range	100 km
Payload	10 kg
Engine type	Gasoline

The "Sokli" Test

- Sokli area target (large mineralisaton)
- Abandoned airstrip in Sokli to be used
- Finnish civil aviation introduced drone no-flight zone shortly before field campaign

 Need for reconnaisance of suitable drone landing site / runway – not easy (trees, ditches, stones)

The "Sokli" Test

Weather miserable: rain, first winter snow ... impossible to carry our all planned flights
Limited range of BVLOS due to radio link
Max 600 ft AGL restriction from Finnish CAA

Flight tracks – 4 repated flts + 2 parallel

The Multi-Rotor Platform

Finding a suitable multi-rotor platform was done in coorporation with Drone Systems

Arcsky X55	×12
Wingspan	2.00 m
Length	2.00 m
Weight	25 kg MTOM
Operational time	23 minutes
Operational range	20 km
Payload	7,7 kg
Engine type	Hybrid (Battery or Gasoline)

The "Erzgebirge Nordrand" Test

- The Arcsky X55 should arrive with Drone System in week 44 (this week)
- The iMAR IMU is in Germany for an upgrade

The internal GNSS receiver is getting upgraded – then we do not need an external GNSS receiver

- Together with BEAK and Drone Systems:
 - Areas of interest have been identified
 - Flight lines have been proposed
 - Gound gravity survey has been carried out (we needed an indication of target resolution for setting flight speed)
- Final field plan is awaiting drone testing

RawMaterials Connecting matters

DTU

GTK

Thank you for your attention!

